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Perovskite  solar  cells  (PSCs)  have  attracted  much  atten-

tion  due  to  their  low  cost,  high  efficiency  and  easy  process-
ing.  Recently,  You et  al.  achieved a record efficiency of  26.1%
(certified 25.6%) in PSCs with excellent stability[1].  Excess PbI2
in  perovskite  films  was  converted  into  inactive  (PbI2)2RbCl  to
avoid its detrimental effect to device stability, while maintain-
ing its positive effect to device efficiency.

Most  highly  efficient  PSCs  were  achieved  with  excess
PbI2 in  either  perovskite  bulk  or  film  surface.  For  example,
Seo et  al.  fabricated  PSCs  with  >25%  efficiency  by  using  per-
ovskite  precursor  solution  with  excess  PbI2

[2].  Besides,  You
et  al.  achieved  planar  PSCs  with  efficiency  close  to  20%  in
2016  through  annealing  perovskite  films  at  high  tempera-
ture to induce its partial  decomposition and form excess PbI2
spontaneously[3].  The increased efficiency in PSCs with excess
PbI2 resulted  from  PbI2 passivation.  Owing  to  the  larger
bandgap  of  PbI2,  a  favorable  type Ⅰ band  alignment  was
established between PbI2 and perovskite, forming energy barri-
ers to block both electron and hole transport to grain bound-
aries  (GBs)  and  repel  them  into  perovskite  grains[4, 5].  As  a
result,  potential  carrier  recombination  induced  by  defects  at
GBs  was  effectively  inhibited,  thus  improving  device  effi-
ciency. In addition, the excess PbI2 at perovskite/charge-trans-
port  layer  interface  can  block  possible  interfacial  recombina-
tion, further enhancing device efficiency.

However,  scientists  found  that  excess  PbI2 in  perovskite
films  could  cause  severe  stability  issues  of  PSCs  especially
under  illumination,  despite  increased  efficiency[6, 7].  PbI2
tended to decompose into metallic Pb0 and I2 under illumina-
tion,  yielding  Pb0 defects  and  thus  decreasing  device  effi-
ciency[8].  I2 product could further promote perovskite decom-
position, even destroy charge-transporting layer[9, 10] and cor-
rode  metal  electrode[11, 12],  accelerating  device  degradation.
In addition, excess PbI2 can absorb adjacent MA+ (or FA+) and
I− during  perovskite  aging,  yielding  MA+ and  I− vacancies[13].
Theses vacancies can act as channels for ion migration in per-
ovskite films, also leading to device degradation.

To  reduce  the  negative  effect  of  excess  PbI2,  Zhu et  al.
reported  a  chemical  polishing  method  to  optimize  per-
ovskite  films.  They  introduced  excess  PbI2 during  perovskite
growth  to  obtain  high-quality  perovskite  films.  Then  they
washed  away  excess  PbI2 on  perovskite  surface  through  its

reaction  with  ammonium  salts  in  the  polishing  agents
(Fig.  1(a))[14],  avoiding  PbI2-induced  perovskite  degradation.
The  PSCs  exhibited  over  24%  efficiency  with  good  light  and
air  stability.  In  addition,  Luo et  al.  reported  a  ligand-modu-
lated  method  (Fig.  1(b))  to  regulate  the  shape  and  distribu-
tion  of  excess  PbI2 in  perovskite  films  via  introducing
cetyltrimethylammonium  bromide  (CTAB)[15].  CTAB  caused
PbI2 into  2D  nanosheet,  vertically  sticking  among  perovskite
grains.  As a result,  over 22% efficiency was obtained. Besides,
Li et  al.  modulated  excess  PbI2 with  ionic  liquid  [BMIM]X
(Fig.  1(c))[16].  [BMIM]X  could  interact  with  PbI2 and  form
supramolecular  structures,  which  could  relax  lattice  distor-
tion  and  release  residual  tensile  strain  in  perovskite  films,
thus improving device stability.

Recently,  You et  al.  managed  excess  PbI2 through  RbCl
doping  in  perovskite  films[1].  RbCl  reacted  with  PbI2 to  form
(PbI2)2RbCl  (Fig.  2(a)).  (PbI2)2RbCl  promoted  the  formation
and  stabilization  of  black  FAPbI3 phase  through  Pb-Cl  bond-
ing.  On  the  other  hand,  (PbI2)2RbCl  was  inactive  and  could
not  react  with  FA+ or  I− of  perovskite  grains,  thus  inhibiting
the formation of FA+ or I− vacancies and suppressing ion migra-
tion  (Fig.  2(b)).  Besides,  (PbI2)2RbCl  is  an  intercalated  com-
pound  and  is  more  favorable  to  block  ion  migration  in  per-
ovskite.  As  a  result,  a  record  efficiency  of  26.1%  (certified
25.6%) was realized in PSCs with good stability (Fig. 2(c)). The
devices  retained 96% of  initial  efficiency  after  aging in  N2 for
1000 h and 80% of initial value after aging at 85°C for 500 h.

In  short,  future  efforts  on  PSCs  will  focus  on  improving
the module efficiency and stability for real commercialization. 
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Fig. 1. (Color online) (a) Chemical polishing of perovskite surface to eliminate excess PbI2. Reproduced with permission[14], Copyright 2022, Ameri-
can Chemical Society. (b) Ligand-modulated PbI2 nanosheet in PSCs. Reproduced with permission[15], Copyright 2020, Wiley. (c) Supramolecular
engineering to modulate excess PbI2 in PSCs. Reproduced with permission[16], Copyright 2022, Wiley.
 

Fig. 2. (Color online) (a) (PbI2)2RbCl and its crystal structure in PSCs. (b) Ion-migration activation energy in control perovskite or perovskite with
(PbI2)2RbCl. (c) J–V curves for PSCs with (PbI2)2RbCl. Reproduced with permission[1], Copyright 2022, the American Association for the Advance-
ment of Science.
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